
Extent−like Performance from
a UNIX File System

L. W. McVoy & S. R. Kleiman − Sun Microsystems, Inc.

ABSTRACT
In an effort to meet the increasing throughput demands on the SunOS file system made both by
applications and higher performance hardware, several optimization paths were examined. The
principal constraints were that the on−disk file system format remain the same and that
whatever changes were necessary not be user−visible. The solution arrived at was to
approximate the behavior of extent based file systems by grouping I/O operations into clusters
instead of dealing in individual blocks. A single clustered I/O may take the place of 15−30
block I/Os, resulting in a factor of two increased sequential performance increase. The changes
described were restricted to a small portion of the file system code; no user−visible changes
were necessary and the on-disk format was not altered.

Introduction

File systems are a common place to find perfor-
mance problems. The original UNIX file system
[Thompson] is elegant in its simplicity: it has a single
block size and a simple list based allocation policy.
[McKusick] describes the drawbacks of this design
and also describes Berkeley’s fast file system (FFS).
The fast file system solves many performance prob-
lems found in the original UNIX file system. The fast
file system is the basis for UFS, Sun’s UNIX File Sys-
tem.1

UFS has served us well for several years. How-
ever, both applications and disk subsystems are
demanding higher and higher transfer rates through
the file system. Applications such as video and sound
require much higher data rates than are available
today through UFS. Disk subsystems, such as disk
arrays [Patterson], are being developed to deliver the
desired I/O rates. Measuring the existing UFS showed
that about half of a 12MIPS CPU was used to get half
of the disk bandwidth of a 1.5MB/second disk.

Goals and constraints
It was clear that the current implementation of

UFS did not scale to the desired I/O rates, so we set
out to improve the system. We wanted a UFS that
used less CPU to run the disks at their full bandwidth.
An additional goal was that all users of the file system
should benefit from the enhancements; the primary
constraint was that the on−disk format of the file sys-
tem could not change, The ‘‘dusty−deck’’ approach
insured that no application would need to be aware of
the enhancements.

1UFS has been modified to fit into Sun’s virtual file system
architecture [Kleiman]. Other than that, it has been tracking
the fast file system very closely.

This paper describes an enhancement to UFS
that met all our goals. The remainder of the paper is
divided into seven sections. The first section reviews
the relevant background material. The second section
discusses several possible solutions to the perfor-
mance problems found in UFS. The third section
describes the implementation of the solution we
chose: file system I/O clustering. The fourth section
discusses problems found in the interaction between
the file system and the VM systems. The next section
presents performance measurements of the modified
file system. The sixth section compares this work to
other work in this area. The final section discusses
possible future enhancements.

Background

To understand our UFS enhancements, it is
necessary to understand the basics of the SunOS Vir-
tual Memory (VM) and Virtual File System (VFS)
architectures2. A brief review is presented here.
More details on the VM system may be found in
[Gingell] and [Moran]. Readers familiar with the
interaction between the VM system and a file system,
in particular the rdwr, getpage, and putpage
VFS interfaces, may wish to skip forward to the sec-
tion on UFS performance problems. Readers familiar
with either FFS or UFS, in particular the reasons for
its rotational delay, may skip past the section on UFS
performance problems. Readers are expected to
understand the original UNIX I/O system (the buffer
cache) explained in [Bach] and [Ritchie].

2The VM and VFS architectures are similar to those in
System V release 4. Virtually all references to SunOS are
also applicable to SVR4.

USENIX − Winter ’91 − Dallas, TX 1



Extent−like Performance from a UNIX File System McVoy & Kleiman

Virtual file system interfaces
The SunOS virtual file system (VFS) interface

[Kleiman] allows the kernel to support many different
types of file systems simultaneously. Each file system
type implements two object classes: vfs and vnode. A
VFS object represents a particular instance of a file
system. A vnode object represents a particular file
within a VFS. These objects export interface routines
that the main body of the kernel uses to manipulate a
file system without knowing the details of how it is
implemented. A file system type may be thought of as
a driver that provides a set of file system abstractions
without exposing the details of the implementation.

There are many entry points into a VFS, but we
need concern ourselves only with the read/write
(rdwr), read a page (getpage), and the write a page
(putpage) interfaces. These are the interfaces used
by the read, write, and mmap system calls that
the programmer sees.

The getpage interface returns a page filled
with data from the vnode at the file offset specified by
the caller. The file system may use a page cache sup-
plied by the VM system to store active page data. The
entries in this cache are named by the vnode and file
offset of the data in the page. The putpage inter-
face is used to return a page to secondary storage.

In most SunOS file systems, the getpage and
putpage routines are where the I/O actually occurs.
It is important to understand that getpage and
putpage are used asymmetrically. getpage is
usually called first both for reading and writing. In the
read case it is called to retrieve that data from the disk.
In the write case it is called to get a copy of the data to
be modified. putpage is only called when the
page is to be written to the backing storage.

When a process uses the read or write sys-
tem call, the kernel redirects the call to the rdwr
entry point of the appropriate VFS. rdwr copies
the appropriate file data to or from a buffer supplied
by the caller. Usually this is the buffer specified by the
process in the read or write system call. Many file
systems implement rdwr by mapping a portion of
the file into the kernel’s address space and then copy-
ing to or from the user’s buffer.

SunOS virtual memory system
The SunOS VM model is similar to that of Mul-

tics [Organick] and TENEX [Bobrow]. The VM sys-
tem works in concert with the file systems to manage
a cache of vnode pages. To illustrate the caching
mechanism, we describe the VM system’s manage-
ment of a simple address space. The address space,
associated with a process, is made up of a collection
of segments each of which refers to a portion of a file
(vnode).

as

seg1
vnode1

VFS1
(UFS)
[text]
a.out

UFS
disk

seg2
vnode2

VFS2
(NFS)
[lib]

libc.so

NFS
server

page
cache

a.out
offset 0K

a.out
offset 16K

libc.so
offset 32K

libc.so
offset 36K

Figure 1: The VM system.

Figure 1 shows a simple address space made up
of two files: a.out, a file from a local UFS file sys-
tem, and libc.so, a dynamically linked shared
library from a remote NFS file system.

Page faults
When a process references an address for the

first time, a page fault occurs. The fault is resolved by
traversing the object hierarchy and invoking the fault
handlers for each object type. Specifically, the kernel
finds the address space associated with the process
and calls the address fault handler, passing it the fault-
ing address. The address fault handler uses the
address to find the enclosing segment and calls that
segment’s fault handler. The segment’s fault handler
converts the address into a <vnode, offset> pair and
calls getpage of the associated file system. The
getpage routine first requests the VM system to find
the page denoted by the <vnode, offset> argument. If
the page is found in the page cache, it is returned.
Otherwise, the page is not in memory and the file sys-
tem has to retrieve the page from secondary store.
After the data has been retrieved, the file system puts
the page in the page cache for future reference.

An important point is that there is no longer a
distinction between process pages and I/O pages.
Pages are brought into the system for different reasons
but they are all labeled in the same way. This unified
naming scheme allows all of memory to be used for
any purpose, based on demand. All of memory may
be an I/O cache if the system is acting primarily as an
I/O server, or all of memory may be used up for a sin-
gle large active process. Older UNIX variants confined
I/O pages to a small ‘‘buffer cache.’’

UFS details
The UFS implementation uses several internal

concepts, such as inode, dinode, logical block, and
physical block. These are explained in [Leffler] but
we briefly review them here.

2 USENIX − Winter ’91 − Dallas, TX



McVoy & Kleiman Extent−like Performance from a UNIX File System

UFS represents each active file with an inode.
An inode is an in−memory version of the control
information associated with a file; the inode is initial-
ized when the file is first read from disk from an
on−disk structure called the dinode. The inode con-
tains information such as file size, the location of the
first few data blocks on disk, date created, etc. Each
inode is directly associated with a vnode. Inodes also
contain meta information that the file system uses to
help tune performance. We discuss this information in
the ufs_getpage section below.

UFS breaks up each file into logical blocks. A
logical block is the main unit of allocation in UFS3.
Logical block numbers, or lbns, are numbered from
zero and denote a particular block of a particular file.
Logical blocks are used for two reasons: to decouple
the file system block size from the disk block (or sec-
tor) size, and to decouple the location of a block in a
file from the location of the block on the disk.

ufs_rdwr
ufs_rdwr performs a read by breaking the

request into block sized pieces, mapping each file
block in turn to an unused portion of the kernel’s
address space, copying the data to the requesting pro-
cess, and unmapping the block.

If the page representing the block is not already
in memory with an active MMU translation, the copy
will fault. The kernel handles the fault by calling
ufs_getpage to find the page. After the page is
retrieved, the MMU translation to the page is set up,
the fault returns, and ufs_rdwr finishes the copy
unaware that the fault ever occurred.

Repeated accesses to the same page will find the
page still in memory with an active translation and
will avoid multiple page faults.

The work done for a write is similar. The main
difference is that when the block is unmapped from
the kernel’s address space after each block is copied,
ufs_putpage will be called to start the I/O to the
disk. ufs_rdwr can also request that
ufs_putpage wait until the I/O is complete (syn-
chronous write) or that it return after the I/O has been
started.

ufs_getpage
When ufs_getpage is called, it first checks

to see whether the page is actually already in the page
cache and returns the page if it is. Otherwise, it con-
verts the vnode and offset into the equivalent inode
and logical block number and calls bmap, which is
responsible for mapping logical blocks of an inode to
physical blocks on the disk as well as the allocation of

3For the purposes of this discussion, we will assume that
the size of a block is always greater than or equal to the size
of a page.

physical blocks on disk. It uses the block pointers in
the inode to perform the translation, unless the file is
large, in which case the inode contains a pointer to a
disk block of pointers; this block is called an indirect
block. For large files, bmap needs to fetch the
indirect block to perform the translation. The physical
block number returned by bmap is used to start up
the I/O.

The ufs_getpage routine is complicated by
the heuristics for optimizing read performance. The
algorithm is shown in figure 2.

bmap() to find disk location
if (requested page not in cache) {

start I/O for requested
}
if (sequential I/O) {

do another bmap() if necessary
start I/O for next page

}
if (first page was not in cache) {

wait for I/O to finish
}
predict next I/O location

Figure 2: UFS getpage algorithm.

In the absence of other information,
ufs_getpage uses the pattern of logical block
requests it sees to predict the file access pattern in the
near future. If the pattern of requests is such that the
current request is one page greater than the last
request, it is assumed that the file is being accessed
sequentially. If sequential access is detected,
ufs_getpage predicts that the next access will be
to the page following the requested page. In this
event, ufs_getpage will read ahead, i.e., will
start the I/O for the page following the one requested.

page 0
sync read page 0
async read page 1

nextr = 1

page 1

async read page 2
nextr = 2

page 2

async read page 3
nextr = 3

Figure 3: access pattern showing read ahead.

The series of events that will cause read ahead is
illustrated in figure 3. Each box represents a page and
shows what happens when a fault is taken for that
page. The first fault (for page 0) will start an I/O read
for page 0 and also start up an I/O read ahead on page
1. The next fault (for page 1) will find page 1 in
memory and will start up a read on page 2 and so on.

In figure 3, the first page fault caused both the
primary read and the read ahead. Since the fault was
for the beginning of the file, it may seem that the read
ahead heuristic should not have been enabled. The
file system uses an inode field, nextr, to predict the
location of the next read. When the inode is initial-
ized, nextr is set to zero, predicting that the first

USENIX − Winter ’91 − Dallas, TX 3



Extent−like Performance from a UNIX File System McVoy & Kleiman

read will be the first block of the file. Starting read
ahead at the beginning of the file turns out to be a
beneficial heuristic.

ufs_putpage
When the kernel wishes to free some pages that

contain modified data, it calls the appropriate file
system’s putpage routine. putpage simply
writes out the page data to the correct location on
secondary storage.

UFS performance problems
This section considers the reasons that file sys-

tem operations in UFS are so expensive. The answer
comes in two parts: computational overhead and
placement policy. There is little that can be done that
will reduce the computational overhead. The compu-
tational cost can be amortized by moving more data
for each traversal of the file system code. This idea
was a basic motivation for the FFS changes to the ori-
ginal UNIX file system. Placement policy is more
interesting. Even if we reduced the computational
overhead to zero, the file system could not deliver the
data faster than half the disk transfer rate.

Placement policy
While UFS has many tuning parameters, includ-

ing ones that affect the placement policy, it is almost
always tuned in the same way.

disk

0

1

2

3

Figure 4: Interleaved blocks.

Blocks from a single file are placed as shown in figure
4 in which you are looking down on one track of a
disk platter. (The unlabeled blocks will be used by a
different file.) The file system is responsible for plac-
ing the logical blocks on the disk in a pattern that is
optimal for sequential access. Each block is separated
by a gap called the rotational delay or rotdelay by
the file system code4. rotdelay is specified in
milliseconds and the minimum non−zero value is the
rotational delay of one block time. For a file system
with a block size of 8KB this is 4 milliseconds on typ-
ical disks. The number of blocks placed contiguously
between each rotational delay is known as maxcon-
tig. maxcontig is typically set to 1 as shown in
figure 4.

4Note that UFS does this differently than file systems in
other operating systems in that the gap is maintained by
software. Other systems format the disk to have this gap
and call it the disk interleave.

Rotational delay
Why is the rotational delay necessary? We

already know that the file system does read ahead to
avoid delays in sequential access. The rotational
delays allow the file system enough time to deliver the
current block to the requesting process, for the process
to compute using the new data then generate a request
for the next block, and for the file system to check that
the requested block is in memory (due to read ahead)
and generate the disk I/O for the next read ahead
block. If the file system is properly tuned, the I/O
request will get to the disk as the appropriate block is
moving under the head. If there were no rotational
delay, the next block would already have started under
the disk head by the time the disk saw the request.
The disk would have to wait almost a full rotation
(about 16 milliseconds on today’s disks) before start-
ing that request.

This explains why the rotational delay is neces-
sary but we can see that it comes at a cost: having
those holes reduces the maximum transfer rate to half
that of the disk rate. To solve this performance prob-
lem, the rotational delays must be eliminated and the
computational overhead of the system must be
reduced.

Possible Improvements

In this section we explore the full range of
improvements, from hacks to completely new file sys-
tem implementations. We reject them all except clus-
tering; the discussion of the extent based file system
solution is of special interest.

Raw disk
Get rid of the file system altogether by using the

raw disk. Some users, mostly those running database
applications, actually do this. There is no question of
file system overhead; the raw disk is a direct interface
plus a few permission checks.

This solution is an act of desperation. There is
no file system, no file abstraction, no read ahead, no
caching, in short, none of the features that are
expected of a file system. The fact that users resort to
the raw disk is usually an indication that the file sys-
tem is too slow.

File system tuning
Tune the file system to take advantage of track

buffers. A track buffer is a memory cache the size of
one track commonly found on newer disks, such as
SCSI disks, that have on board controllers. When a
read request for a block is sent to the disk, the entire
track is read into the buffer. If successive blocks are
on the same track, they are serviced immediately from
the track buffer. Therefore, there is no need for rota-
tional delay between successive file blocks. UFS can
be tuned to attempt to place successive blocks

4 USENIX − Winter ’91 − Dallas, TX



McVoy & Kleiman Extent−like Performance from a UNIX File System

contiguously on the disk by setting rotdelay to
zero (see figure 5). This increases read performance
substantially, since an entire track’s worth of file data
can be read in one rotation.

disk

0

1

2

34

5

6

7

Figure 5: Non−interleaved blocks.

At first glance this looks like a win. If we had no
rotational delays then a track would contain twice as
much relevant data and the effective disk bandwidth
would be twice as great. However, not all drives have
track buffers. Drives without track buffers would
suffer substantial performance penalties on both reads
and writes. Still, many of the drives sold today do
have track buffers, so why not take the easy way out?
The answer is write performance; it suffers horribly
when the file system has no rotational delay. The rea-
son for this is that the track buffer acts as write
through cache, each write goes through the track
buffer to the disk5. Since the writes go directly to the
disk, we need the rotational delay between each block
or each write will wait a full rotation before begin-
ning. Given that writes will degrade and only some
reads will improve, we rejected this approach.

Driver clustering
First tune UFS to allocate sequential logical file

blocks contiguously by setting rotdelay to zero.
Then have the disk driver combine (cluster) any con-
tiguous requests in its queue into one large request.
This is relatively simple to implement, since many
SunOS disk drivers call a routine, disksort, that
orders the disk queue for optimal seek performance.
These drivers call disksort each time a new block
request is received. disksort could coalesce
multiple adjacent blocks into one I/O request.

One disadvantage of this approach is that the file
system code must be traversed for each block. We
felt this to be excessively expensive in CPU cycles.
Another problem is that driver clustering helps only
writes. The reason for this is that there can be many
related writes in the disk queue at once, since writes
are asynchronous in nature. Reads, on the other hand,
are synchronous, so there can be at most two, the pri-
mary block and the read ahead block, in the queue at
once. Finally, not all drivers call disksort.

5If the block went into the buffer, but not on the disk, the
system and/or user may believe that the data is safely on
stable storage. If the system crashes the data is lost, even
though a promise was made that the data was safe.

Instead, those drivers depend on intelligent controllers
to do the ordering of requests.

Extent based file system
Replace UFS with a new file system type, an

extent based file system. This is a popular answer to
file system performance issues. The basic idea is to
allocate file data in large, physically contiguous
chunks, called extents. Most I/O is done in units of an
extent. This improves performance in both I/O rate
and CPU utilization, since the I/O is done contigu-
ously, and file system CPU overhead is amortized
over larger I/Os. Typically, the user can control the
size of these extents on a per-file basis. In most cases
the on−disk file system represents the mapping of log-
ical file blocks to physical blocks as a tuple of <logi-
cal block number, physical block number, length>. In
addition, the on−disk inode is usually expanded to
maintain the user’s requested extent size(s).

The disadvantage of exposing extents to the user
is that it is unlikely that a user will be able to choose
the ‘‘right’’ extent size. Even if a good extent size
can be determined for a particular file, the size will
vary between machines with different configurations,
between file systems on the same machine, or even
between different locations on the same file system.
For example, consider a variable geometry drive (a
drive that has more blocks on the outer tracks than on
the inner tracks). Such a drive may have different
values for the optimal extent size at different loca-
tions. The same sort of problem exists when consider-
ing a single drive versus a disk array [Patterson]. Try-
ing to write portable code that knows about extents is
close to impossible.

Exposing this sort of information to the applica-
tion is rarely helpful and is frequently confusing.
Users rarely want to manage extents. Usually, they
really want some sort of performance promise. If the
file system performed satisfactorily, the user would
never consider telling the file system what to do. We
believe that the file system is capable of the required
performance with no assistance from the user.

Another disadvantage of this approach is that a
change in on−disk file system format would require
changes to many system utilities, such as dump,
restore, and fsck.

File system clustering
Modify UFS to combine blocks adjacent to the

requested blocks into a larger I/O request. This pro-
duces most, if not all, of the advantages of an
extent−based file system without requiring changes to
the on−disk format of UFS.

USENIX − Winter ’91 − Dallas, TX 5



Extent−like Performance from a UNIX File System McVoy & Kleiman

Clustering Implementation in UFS

This section presents the implementation of the
solution we chose, clustering in the file system. The
goal of our solution is to realize the full potential of
the disk but to incur less CPU cost per byte doing so.

To reach our goal we made two basic changes:
we tuned the file system to allocate files contiguously
and we changed the file system to transfer sequential
I/O in units of clusters. A cluster is simply a number
of blocks, usually about 56KB worth6. This approach
solves both of the problems in the old system: the
rotational delays are removed, which potentially
allows a single file to be read or written at the disk
speed, and clusters are used in place of blocks which
causes the file system code (and the driver code below
it) to be traversed far less frequently than in the old
system. The details of our implementation follow.

Allocator details
There were no changes to the allocator. The

UFS allocator has always been able to allocate files
contiguously. This is almost true; in reality the alloca-
tor tries to allocate files as requested, but it may not be
able to do so if the disk is fragmented. Since our work
depends heavily on contiguous allocation, it is impor-
tant to have confidence in the allocator’s ability to
allocate contiguously.

Most extent based file systems have the ability to
preallocate extents to insure maximum transfer rates.
We had originally considered preallocation as well but
experience showed that this was largely unnecessary.
We tried several tests, ranging from filling up an
entire partition with one file to filling up the last 15%
of a heavily fragmented /home (users’ home direc-
tories) partition. In the best case, the average extent7

size was 1.5MB in a 13MB file. In the worst case, the
average extent size was 62KB in a 16MB file. We
expected the allocator to do well when there were no
other competing files, but were worried about the
fragmented file system case. The results showed us
that the allocator thinks ahead enough that it has a
good chance of being able to allocate blocks in the
desired location. The reason that the allocator is able
to do so well is that it keeps a percentage of the disk
(usually 10%) free at all times. The free space is not
in a fixed location; the allocator may use any free
block at any time as long as it keeps a certain percen-
tage free. It uses this flexibility to do better allocation,
good enough that we decided not to ‘‘fix’’ the system
by adding preallocation code.

656KB is used because there are still drivers out there with
16 bit limitations.

7Extent is used here to indicate a span of contiguous blocks
followed by a gap (unrelated block). An extent may contain
any number of clusters.

Sizing clusters
We use maxcontig to indicate the desired

cluster size8. Although we ask the allocator to create
clusters of size maxcontig blocks, the actual clus-
ter size may be less than that. For example, we may
want to transfer a 40KB cluster but the portion of the
file that we want may be in two 20KB extents on the
disk. Somehow, the file system needs to be told that
20KB is the best that can be done at the moment.

The bmap routine is able to give us this infor-
mation since its job is to know about the location of
the file on disk. bmap used to take a logical block
number and return a physical block number. We
modified it to return a length as well as the physical
block number. The portion of the file starting at the
logical block given to bmap is located at the physical
block returned and continues for at least the length
returned. The length returned is at most maxcon-
tig blocks long and is used as the effective cluster
size by the caller (ufs_getpage or
ufs_putpage).

Read clustering implementation
The implementation of read clustering is in

ufs_getpage, no changes were required anywhere
else (but see the section on page thrashing below).
The ufs_getpage code still implements the same
ideas: do a transfer, predict the location of the next
transfer, and if the prediction comes true start the read
ahead. The changes in ufs_getpage all stem
from the switch to clusters from blocks: the rest of the
code did not need to be changed. The read ahead
implementation, shown in figure 6, is a little different,
since we don’t do a read ahead on each page, just on
each cluster.

page 0
sync

0,1,2
async

3,4,5
nextrio 3

page 1 page 2 page 3

async
6,7,8

nextrio 6

page 4 page 5 page 6

async
9,10,11

nextrio 9

1st cluster 2nd cluster ...

Figure 6: Clustered reads when maxcontig = 3.

As before, each box represents a page and con-
tains the actions that occur as a result of the call to
ufs_getpage for that page. The first box shows
the synchronous read of the first cluster, and the asyn-
chronous read of the second cluster. It remembers
where to start the next read ahead by setting the nex-
trio inode field to the current location plus the size
of the current cluster. The next two calls do nothing
except return the page. Even the call for page 3 finds
the data in memory because this data was prefetched.

8Previously, when rotdelay was zero, maxcontig
had no meaning, but now it always indicates cluster size.

6 USENIX − Winter ’91 − Dallas, TX



McVoy & Kleiman Extent−like Performance from a UNIX File System

But we notice that this is the start of a new cluster and
we start up the prefetch of 6, 7, and 8. The pattern
repeats indefinitely, every third fault will start a pre-
fetch three pages ahead.

Earlier, we said that, although the allocator tries
to place a file contiguously on disk, it may not be able
to do so because of fragmentation. This means that
the cluster sizes sent back from bmap may vary at
any point. In fact, an old file system will always send
back a cluster of one block because of the rotational
delays between each block. To insure that the read
ahead code works regardless of cluster size, the code
that sets up the next read bases its calculations on the
returned rather than desired cluster size.

Write clustering implementation
The implementation of write clustering is con-

tained in ufs_putpage. We handle writes by
assuming sequential I/O and pretending that the I/O
completed immediately (in other words, do nothing).
If the sequentiality assumption is found to be wrong at
the next call, we write the previous page out and then
start over with the current page. If the assumption is
correct, we keep stalling until a cluster is built up and
then write out the whole cluster. The implementation
relies on the page cache to hold dirty pages that
ufs_putpage pretended to flush. The sequence of
events is shown in figure 7.

page 0
lie

page 1
lie

page 2
push 0,1,2

page 3
lie

page 4
lie

page 5
push 3,4,5

1st cluster 2nd cluster

Figure 7: Clustered writes with maxcontig = 3.

To implement write clustering, we added two
more inode fields: delayoff and delaylen, as
seen in figure 8. These new fields indicate the offset
of the first page that was delayed and the number of
pages delayed (in bytes), respectively.

if (delaylen < maxcontig &&
delayoff + delaylen == off) {

delaylen += PAGESIZE
return

}
find all pages from delayoff

to delayoff + delaylen
while (more pages) {

bmap()
start I/O for this cluster
subtract that many pages

}

Figure 8: Clustered write algorithm.

We use these variables to detect sequential vs. random
write patterns. If we do detect random writes, we
write out the old pages between delayoff and

delayoff + delaylen before restarting the
algorithm with the current page; this is not shown in
figure 8.

The fact that the allocator may not be able to
allocate contiguously is reflected in the addition of the
while loop. Note that this means we do not know if
the file is allocated contiguously until we try to write
out the cluster.

Unanticipated Problems

The implementation of clustering uncovered
other problems in the system which are described
here. Many of these can be traced to the interaction of
the file and VM subsystems.

Page thrashing.
We thought that the file system was the only

major bottleneck in I/O throughput, but in fixing it
another problem area appeared: the paging part of the
VM system. After reducing the file system overhead
by clustering, we expected to be able to see
throughput rates equivalent to the disk bandwidth.
The throughput was lower than expected and we
found that the VM system was the culprit. Pages were
entering the system at a higher rate than they could be
freed.

The unified VM system has only two ways of
freeing pages: removing the backing store (unlinking
the file) or running the pageout daemon. The pageout
daemon implements (or tries to implement) a least
recently used page replacement algorithm. The algo-
rithm is the basic two handed clock and is explained
in [Leffler]. The first hand of the clock clears refer-
ence bits and the second hand frees the page if the
reference bit is still clear. The hands move, in unison,
only when the amount of free memory drops below a
low water mark.

Considering large sequential I/O, we can see that
the pages just brought in are recently touched and as
such will not be candidates for page replacement.
This has the side effect of using all of memory as a
buffer cache for I/O pages. For limited I/O, this is
generally a good policy, but for large (greater than
memory size) I/O this is a poor policy since it will
replace all, potentially useful, pages with I/O pages
that are unlikely to be reused. The VM system imple-
ments a least recently used (LRU) page replacement
algorithm but for large I/O it should implement most
recently used (MRU).

Suppose we were to move an infinite amount of
data through the system. If we have other users on the
system, we don’t want to disturb their pages or they
won’t be able to do any work. In this case, the best
thing to do is to use and reuse a small number of
pages, say the current cluster’s worth. Unfortunately,
this is not always the best thing to do or it would be
the default in the system. If we used MRU for every

USENIX − Winter ’91 − Dallas, TX 7



Extent−like Performance from a UNIX File System McVoy & Kleiman

file, we would effectively turn off caching, which is as
bad as the original problem of destroying the cache.

We needed a compromise that would allow large
I/O to go through the system with little impact but still
leave in place the caching effects for smaller files.
The compromise is inelegant and eventually the pag-
ing subsystem will be improved to address these
issues properly. For now, we turn on free behind if
the file is in sequential read mode, at a large enough
offset, and free memory is close to the low water mark
that turns on the pager.

Free behind is triggered in rdwr when the ker-
nel unmaps the page. If the free behind conditions
specified above are met, then the unmap will cause a
call to ufs_putpage that will free the page. Free
behind has the desired attribute that the process that is
causing the problem is the process finding the solu-
tion. The pageout daemon no longer wakes up to free
pages when the system is heavily I/O bound, since the
I/O bound processes are doing it themselves. Having
a process do the free behind in the I/O code path elim-
inates the overhead associated with switching to and
running the pageout daemon.

Write limits or fairness
There is a fairness problem with write in the

VM system. A single process can lock down all of
memory by writing a large file (remember that write
I/O is asynchronous; the kernel copies it and allows
the user process to continue). In old UNIX systems, the
buffer cache imposed a natural limit on the amount of
memory that could be consumed for I/O. In the
SunOS VM implementation, where all of memory is
used as a cache, there is nothing to prevent a single
process from dirtying every page. For example, a
large process dumping core can cause the system to be
temporarily unusable, since all the pages are essen-
tially locked (they are dirty and in the disk queue
which is the same as being locked down).

This is a basic fairness problem − the asynchro-
nous nature of writes may be used to the advantage of
one process, but it may be at the expense of other
processes in the system.

Our solution to this problem is to limit the
amount of data that can be in the write queue on a per
file basis. We do this by adding what is essentially a
counting semaphore in the inode. Each process decre-
ments the semaphore when writing and increments it
when the write is complete. If the semaphore falls
below zero, the writing process is put to sleep until
one of the other writes completes.

The initial value of the semaphore has to be
chosen carefully. If it is too large we return to the old
problem; if it is too small, we will degrade both
sequential and random performance. The sequential
problem is exposed when we consider the I/O path as
a pipeline. We need to feed the pipe at a fast enough

rate that we never have any bubbles. For example,
suppose we allowed only one write at a time in the
queue. The first write would go down to the driver
and the second would block, waiting for the first to
complete. When the first completes, the second starts
down, but this is too late. By the time the second
request makes it out to the drive, there is a good
chance that the drive will have rotated past the desired
block.

The pipeline problem can be solved by allowing
two or three outstanding writes, but this is still not
good enough. There is another problem with random
access. Consider a process that seeks to the beginning
of the disk, writes a block, seeks to the end, writes a
block, back to the beginning, writes a block, and so on
until N blocks have been written. If we allow the disk
queue to be infinitely large, then disksort will get
a chance to sort the requests such that the system will
seek to the beginning, write N/2 blocks, seek to the
end, and write N/2 blocks. The effective I/O rate will
be much higher in the case without a write limit than
the case with a write limit of one. For this reason, we
allow a fairly large (currently 240KB) amount of I/O
per file in the disk queue.

The limit is currently set on a global basis for all
processes. This is not as flexible as it could be. The
write limit may be better implemented as a resource
limit on a per process basis (see getrlimit(2)).

Performance Measurements

We ran several benchmarks, from pure I/O to
multi−user time−sharing, to test out our work. The
I/O benchmarks, as shown below, showed substantial
improvements, but the time−sharing benchmarks
improved only slightly.

We were a little disappointed with the
time−sharing numbers until we examined the bench-
mark in detail. The benchmark, MusBus, was spend-
ing most of its time sleeping and the rest of the time
running small programs such as date(1) and
ls(1). The largest I/O transfer done by Musbus was
around 8KB which is the file system block size. In
other words, MusBus didn’t move any substantial
amount of data.

cluster rot UFS free write
size delay version behind limit

A 120KB 0 SunOS 4.1.1 Yes Yes
B 8KB 4 SunOS 4.1 Yes Yes
C 8KB 4 SunOS 4.1 No Yes
D 8KB 4 SunOS 4.1 No No

Figure 9: IObench run descriptions.

We use an internal program called IObench to
show transfer rates. Figure 9 explains the
configuration of each of four I/O benchmark runs.
The hardware configuration is the same in each run,
an 8MB, 20MHz Sparcstation 1, with one 400MB 3.5"

8 USENIX − Winter ’91 − Dallas, TX



McVoy & Kleiman Extent−like Performance from a UNIX File System

IBM SCSI drive. We used a kernel that has variables
that enable and disable the old and new code in an
attempt to get an apples to apples comparison. The
‘‘A’’ configuration is almost identical to that shipped
with SunOS 4.1.1; the difference is that the file system
has been tuned to use 120KB clusters instead of 56KB
clusters. The last configuration, ‘‘D,’’ is a close
approximation of a SunOS 4.1 installation; the file
system has been tuned to make 1 block clusters with
the standard 4ms rotational delay. The ‘‘B’’ and ‘‘C’’
configurations are similar to ‘‘D’’ but add some of the
paging and fairness heuristics described in the section
on unanticipated problems.

In the results shown below, the columns are
headed by a three letter name indicating the type of
I/O. The first letter means File system, the second
letter indicates Sequential or Random, and the third
letter indicates Read, Write, or Update. The differ-
ence between write and update is that in the update
case the file’s blocks have already been allocated.

FSR FSU FSW FRR FRU
A 1610 1364 1359 383 452
B 805 799 790 369 431
C 749 783 784 366 428
D 749 722 718 370 545

Figure 10: IObench transfer rates in KB/second.

Figure 10 shows the transfer rates, for the vari-
ous I/O types, for four different software
configurations. Since the numbers are hardware
specific, we show and discuss the ratios below.

FSR FSU FSW FRR FRU
A/B 2.00 1.71 1.72 1.04 1.05
A/C 2.15 1.74 1.73 1.05 1.06
A/D 2.15 1.89 1.89 1.04 0.83

Figure 11: IObench transfer rate ratios.

In figure 11, we can see that almost all I/O rates
improved, some slightly and some substantially.
Predictably, the sequential I/O rates improved about a
factor of two. Reads are better than writes because
the track buffer helps only reads. We made a tradeoff
in favor of reads in not adding rotational delays
between clusters. If the delays are present, the writes
will improve slightly, but the reads will degrade
slightly.

The random update (or write) numbers went
down when compared to the generic 4.1 UFS. We
made a tradeoff between performance and fairness in
favor of fairness, which is explained in the section on
unanticipated problems.

CPU Notes
2.6s 4.1.1 UFS, no rotdelays, 16MB mmap read
3.4s 4.1 UFS, rotdelays, 16MB mmap read

Figure 12: System CPU comparison.

We used yet another internal benchmark for
comparing CPU time. The benchmark is similar to
IObench, in fact it shows identical I/O rates, but uses
the mmap interface to avoid the copying of data from
the kernel to the user. The IObench CPU times are
dominated by the copy time and hence are approxi-
mately the same. Since we want to show the overhead
of the new system versus the old, we used mmap.
The cpu times in figure 12 show the seconds used by
the CPU to read a 16MB file. The new UFS is
approximately 25% more efficient in terms of CPU
cycles. We believe that we can do even better; we
explain how in the section on further work.

Comparison to Related Work

Peacock’s System V clustering [Peacock] is the
most similar work we’ve found. The reasoning of
reducing per byte overhead by doing larger requests
is the same. Both designs try to improve perfor-
mance by turning sequential I/O requests into larger
sequential I/O requests. We believe that most of the
following differences can be traced to starting with
one base or the other, UFS versus the System V file
system (S5FS).
�We depend on the FFS allocator to lay out the files

contiguously. Originally we had planned to preallo-
cate blocks, but we found that the allocator does
such a good job that there was little to be gained by
preallocation. The same is not true of the S5FS
allocator. As Peacock pointed out, it is based on a
free list that gets scrambled as the file system ages.
Peacock was forced to rewrite the allocator to make
use of the new bitmap free list. The rewrite caused
on−disk format changes which were reflected in the
file system utilities such as fsck, mkfs, etc.
�The UFS interfaces (ufs_getpage,
ufs_putpage) are general enough that no
changes were needed for clustering. Unfortunately,
the same is not true of the S5FS interfaces (bread,
bwrite). Peacock added mbread and
mbwrite to cluster the I/O while we were able to
hide the clustering beneath the ufs_getpage
and ufs_putpage interfaces.
�Our write algorithm is different, it starts a write

each time a cluster boundary is crossed. Peacock’s
waits until the buffer cache fills up. The problem
with waiting is that the system periodically flushes
the cache to avoid file system inconsistencies in the
event of a system crash or power failure. If the
machine has a large buffer cache (large memory)
then the flush may cause a proportionally large I/O
burst. If the I/O were flushed to disk at each cluster
boundary, the disks are kept uniformly busy, instead
developing large disk queues. Smoothing out the
disk queue will improve perceived performance
since new requests will be serviced quickly.
�As described above, the SunOS VM system had no

I/O heuristics. Peacock was able to use the buffer

USENIX − Winter ’91 − Dallas, TX 9



Extent−like Performance from a UNIX File System McVoy & Kleiman

cache heuristics where we had to add them in order
to prevent the pageout daemon from hogging the
machine.

Further Work

Performance work is never finished; there is
always one more refinement. In this section, we
sketch out further work that could be applied to the
file system. Some of these ideas have to do with clus-
tering but others look at other ways of improving
other aspects of file system performance.

Random clustering. Clustering is currently enabled
only when sequential access is detected in the
ufs_getpage routine. Certain access patterns,
such as random reads of 20KB segments of a file, will
not receive the full benefits of clustering. If the
request is a read of a large amount of data, it is pos-
sible that the request size could be passed down to the
ufs_getpage routine, which could use the request
size as a hint to turn on clustering for what is
apparently random access.

Bmap cache. The translation from logical location to
physical location is done frequently and gets more
expensive for large files because of indirect blocks. A
small cache in the inode could reduce the cost of
bmap substantially.

UFS_HOLE. Since UFS allows files to have holes, it
is possible for bmap to return a hole. If we look
back at the ufs_getpage algorithm (figure 2), we
see that bmap is called even when the requested page
is in memory. The reason for this call is that
ufs_getpage needs to know if the requested page
has backing store (i.e., is not a page of zeros from a
hole in a UFS file). If the page has no backing store,
then ufs_getpage must change the page protec-
tion bits to be read only. A read only page will fault
when written, allowing UFS the chance to allocate the
block to back the page. If the system did not enforce
these rules, a write may appear to succeed but later
will find that there is no more space in the file system.

If UFS did not allow holes in files, we could
bypass the bmap in all the cases that the page was in
memory. One possible solution is to remember
whether the file has holes and do the bmap only if
the page is not in memory or if the file has holes.

Data in the inode. Many files are small, less than
2KB. Caching small files in the system causes frag-
mentation since the cache is made up of pages which
are typically larger that the average file. We would
like the caching effect without the fragmentation
effect. This could be achieved by increasing the size
of the inode in memory and caching small files in the
extra space. This is already done for symbolic links if
the link is small enough (the space normally used for
block pointers is filled with the symlink data on the
first access). Inodes are already cached in the system
separately from pages which means that the system
could satisfy many requests directly from the inode

instead of the page cache. This would not work for
mmap() since the data would not be page aligned.

Extents vs blocks. UFS maintains a physical block
number for each logical block number. Given that
UFS now allocates mostly contiguous files, there is a
potential for substantial space savings by storing
extent tuples of <logical, physical, length> instead of
a long list of physical blocks. Unfortunately, this
would mean an on−disk format change which is not
acceptable for UFS. However, if this idea were cou-
pled with the inode cache, large files could use the
extra space as a bmap cache. To maximize the
benefit of the space, the cache could be a cache of
extent tuples.

B_ORDER. We would like to improve performance
of UFS for the average user, not just the users who
want high sequential I/O rates. One approach is to
discard UFS in favor of a log based file system
[Rosenblum]; this approach has merit. However,
there are improvements that can be made to UFS
today, and the installed base of UFS disks makes them
worth considering.

A long standing problem with UFS is that it does
many operations, such as directory updates, synchro-
nously to maintain file system consistency on the disk.
The file system uses synchronous writes to insure an
absolute ordering when necessary. If there was a way
to insure the order of critical writes, the file system
would be able to do many operations asynchronously.
The performance of commands like rm * would
improve substantially.

We are considering adding a new flag,
B_ORDER, that would be passed down to the various
disk drivers. Requests in the disk queue with the
B_ORDER flag may not be reordered by the driver,
by disksort, or by the controller.

Summary

We have shown an enhancement that doubles the
potential I/O rate of any UFS based file system. We
described our implementation and the results of our
implementation. The results show that the disk poten-
tial can be realized and also show that our method is
less costly in CPU cycles than the old method.

Our approach was similar to that taken by extent
based file systems, but differs in important ways: the
extent size is variable, maintained by the file system,
and is not exposed to the user. We believe that the
user is rarely able to choose a correct extent size
because there rarely exists a ‘‘correct’’ extent size.
The optimal extent size varies based on many factors
that may change during the life of an application.
Even given that an extent based file system may be
able to provide guaranteed throughput for the applica-
tion that chose the optimal extent size, we believe that
the enhanced UFS will provide better average
throughput, since UFS is trying to allocate extents for

10 USENIX − Winter ’91 − Dallas, TX



McVoy & Kleiman Extent−like Performance from a UNIX File System

all applications, not just the ‘‘smart’’ applications.

Acknowledgements

Many people contributed to this project. We
would like to thank the following: Anil Shivalingiah,
who explained the VM implementation over and over,
Matt Jacob, for SCSI knowledge and the driver clus-
tering implementation, Glenn Skinner, Bill Shannon,
John Pope, Mark Smith, and David Rosenthal, for
their helpful comments on this paper, Rich Clewett
and Pat Townsend, for providing the hardware
resources without which this project would have never
completed, and the systems group environment at Sun
Microsystems that made this work possible.

References

[Bach]
M. Bach, The Design of The Unix Operating Sys-
tem, Prentice−Hall, 1986.

[Bobrow]
D. Bobrow, J. Burchfiel, D. Murphy, and R. Tom-
linson, ‘‘TENEX, a Paged Time Sharing System
for the PDP−10,’’ Communications of the ACM,
15(3) March 1972.

[Gingell]
R. Gingell, J. Moran, and W. Shannon, ‘‘Virtual
Memory Architecture in SunOS,’’ Proceedings of
the Usenix Conference, Summer 1987.

[Kleiman]
S. Kleiman, ‘‘Vnodes: An Architecture for Multi-
ple File Systems in Sun UNIX,’’ Proceedings of
the Usenix Conference, Summer 1986.

[Leffler]
S. Leffler, M. McKusick, M. Karels, and J. Quar-
terman, The Design and Implementation of the
4.3BSD UNIX Operating System,
Addison−Wesley, 1989.

[McKusick]
M. McKusick, W. Joy, S. Leffler, and R. Fabry,
‘‘A Fast File System for UNIX,’’ ACM Transac-
tions on Computer Systems, 2(3) August 1984.

[Moran]
J. Moran, ‘‘SunOS Virtual Memory Implementa-
tion,’’ Proceedings of the European UNIX User’s
Group, April 1988.

[Organick]
E. Organick, ‘‘The Multics System − An Exami-
nation of Its Structure’’ M.I.T. Press, 1972.

[Rosenblum]
M. Rosenblum and J. Ousterhout, ‘‘The LFS
Storage Manager,’’ Proceedings of the Usenix
Conference, Summer 1990.

[Patterson]
D. Patterson, G. Gibson, and R. Katz, ‘‘A Case
for Redundant Arrays of Inexpensive Disks
(RAID),’’ Report No. UCB/CSD 87/391,

December 1987.

[Peacock]
K. Peacock, ‘‘The CounterPoint Fast File Sys-
tem’’ Proceedings of the Usenix Conference,
Winter 1988.

[Ritchie]
D. Ritchie and K. Thompson, ‘‘The Unix
Time−Sharing System,’’ Bell System Technical
Journal, 57(6), July−August 1978.

[Thompson]
K. Thompson, ‘‘Unix Implementation,’’ Bell Sys-
tem Technical Journal, 57(6), July−August 1978.

Larry McVoy is currently a Member of Techni-
cal Staff in the Operating Systems Technology
Department at Sun Microsystems. He received M.S.
in 1987 and B.S. in 1985 in Computer Science from
the University of Wisconsin at Madison. Since then,
he has ported Unix to a super computer, brought up
TCP/IP on machines ranging from 80386 to a super
computer, added POSIX conformance to SunOS, and
lectured at Stanford University on Operating Systems.
Since joining Sun, he has been improving the perfor-
mance of the VM and file subsystems of SunOS. He
may be reached by electronic mail at
lm@Eng.Sun.COM, by phone at (415) 336-7627, or
by mail at MS 5-44, 2550 Garcia Ave., Mountain
View, CA, 94043.

Steve Kleiman is currently a Distinguished
Engineer in the Operating Systems Technology
Department of Sun Microsystems. He received an
M.S. in Electrical Engineering from Stanford Univer-
sity in 1978 and a B.S. in Electrical Engineering and
Computer Science from M.I.T in 1977. He has been
involved with the design and development UNIX and
workstation architecture since 1977; first at Bell Tele-
phone Laboratories and then at Sun. He was one of
the developers of NFS, Vnodes, and the original port
of SunOS to SPARC. His electronic mail address is
srk@Eng.Sun.COM.

USENIX − Winter ’91 − Dallas, TX 11



12 USENIX − Winter ’91 − Dallas, TX


